Staurosporine induces chondrogenesis of chick embryo wing bud mesenchyme in monolayer cultures through canonical and non-canonical TGF-β pathways
Hyoin Kim 1 • Kyungmin Kei1 • Jong Kyung Sonn1
Abstract
Staurosporine has been known to induce chondro- genesis in monolayer cultures of mesenchymal cells by dis- solving actin stress fibers. The aim of this study was to further elucidate how the alteration of actin filaments by staurosporine induces chondrogenesis. Specifically, we exam- ined whether the transforming growth factor (TGF)-β path- way is implicated. SB505124 strongly suppressed staurosporine-induced chondrogenesis without affecting the drug’s action on the actin cytoskeleton. Staurosporine in- creased the phosphorylation of TGF-β receptor I (TβRI) but had no significant effect on the expression levels of TGF-β1, TG F- β 2, TGF- β 3, Tβ RI, Tβ RII, an d Tβ RIII.
Phosphorylation of Smad2 and Smad3 was not increased by staurosporine. However, SB505124 almost completely sup- pressed the phosphorylation of Smad2 and Smad3. In addi- tion, inhibition of Smad3 blocked staurosporine-induced chondrogenesis. Inhibition of Akt, p38 mitogen-activated pro- tein kinase (MAPK), and c-jun N-terminal kinase (JNK) sup- pressed chondrogenesis induced by staurosporine. Phosphorylation of Akt, p38 MAPK, and JNK was increased by staurosporine. SB505124 reduced the phosphorylation of Akt and p38 MAPK, while it had no effect on the phosphor- ylation of JNK. The phosphorylation level of extracellular signal-regulated kinase (ERK) was not significantly affected by staurosporine. In addition, inhibition of ERK with PD98059 alone did not induce chondrogenesis. Taken togeth- er, these results suggest that staurosporine induces chondrogenesis through TGF-β pathways including canonical Smads and non-canonical Akt and p38 MAPK signaling.
Keywords Chondrogenesis . Cytoskeleton . Staurosporine . TGF-β
Introduction
Chondrogenesis is a multistep process by which mesenchymal cells differentiate into chondrocytes and then ultimately give rise to skeletal tissues during the formation of limbs (for re- view, see DeLise et al. 2000). During the development of limb buds, mesenchymal cells undergo a shape change from stellate to rounded (Wezeman 1998). Acquisition of a spherical mor- phology is also observed in micromass culture, which mimics in vivo chondrogenesis (Ahrens et al. 1977). The actin cyto- skeletal change that accompanies the change in cell shape is also observed in vivo and in vitro. Actin microfilaments are present inside the cell membrane as a predominantly cortical structure in mature bovine articular cartilage (Langelier et al. 2000). The three-dimensional culture condition permits chon- drogenesis through reorganization of the actin cytoskeleton. When cultured on chitosan film, de-differentiated chondrocytes regain the phenotype of differentiated chondrocytes, with a rounded form and cortical actin (Park et al. 2008).
The important role of actin cytoskeleton reorganization in chondrogenesis has been observed by treating mesenchymal cells with chemical compounds that eliminate actin stress fi- bers. Cytochalasin D, a blocker of actin polymerization, dis- rupts the actin stress fibers and induces chondrogenesis of limb bud mesenchyme cells cultured at subconfluent densities (Zanetti and Solursh 1984). ML-7 (an inhibitor of myosin light chain kinase) and blebbistatin (an inhibitor of myosin II) also remove actin stress fibers and induce chondrogenesis (Kim et al. 2012b). Staurosporine, a microbial alkaloid, sim- ilarly disrupts the actin stress fibers and induces chondrogen- esis of limb bud mesenchyme cells (Kim et al. 2012a). Staurosporine also restores the differentiated functionality of de-differentiated chondrocytes (Borge et al. 1997; Rottmar et al. 2014).
Transforming growth factor betas (TGF-βs) are known as multifunctional growth factors involved in key events in de- velopment and tissue repair (Shi and Massague 2003). TGF-β signaling is mediated by two serine/threonine kinase receptors on the cell membrane, type I (TβRI) and type II (TβRII). When a ligand binds, the receptors form a heterodimeric com- plex. This allows receptor II to phosphorylate the receptor I kinase domain, which then phosphorylates the downstream signaling molecules Smad2/3 leading to forming a heterocomplex with Smad4. The Smad complexes are then translocated into the nucleus to regulate the transcription of target genes (Shi and Massague 2003; Feng and Derynck 2005; Massague et al. 2005). TGF-βs have been known to be critical for chondrogenesis. Several studies have reported that TGF-β promotes chondrogenesis (Kulyk et al. 1989; Schofield and Wolpert 1990; Leonard et al. 1991; Chimal- Monroy and Diaz de Leon 1997; Zhang et al. 2004), while others showed that TGF-βs have an inhibitory influence (Chen et al. 1991; Tsuiki et al. 1996; Seo and Serra 2007; Jin et al. 2008). In order to elucidate the molecular mechanism by which alteration in actin cytoskeleton by staurosporine induces chondrogenesis, we employed low-density cultures of chick wing bud mesenchymal cells. We examined whether staurosporine activates a TGF-β receptor. We also determined the role of canonical and non-canonical TGF-β pathways in staurosporine-induced chondrogenesis.
Materials and Methods
Cell culture and reagents. Monolayer cultures of mesenchy- mal cells were prepared from the wing buds of Hamburger- Hamilton (HH) stage 23/24 chick embryos as described pre- viously (Kim et al. 2012a). Briefly, wing bud cells were sep- arated by digestion with 0.1% trypsin and 0.1% collagenase in Ca2+-Mg2+-free Hanks’s balanced salt solution for 10 min at 37°C. Cells were pelleted at 350×g for 10 min and resuspend- ed with Ham’s F12 medium supplemented with 10% fetal bovine serum (FBS) and antibiotics. Cells were filtered through eight layers of lens paper, and the monolayer cultures were plated at 2×106 cells/60-mm culture dish. They were allowed to adhere for 1 h in a humidified atmosphere at 37°C with 5% CO2. The following biochemical agents were administered either alone or together with staurosporine: PD98059 and SP600125 (Enzo Life Sciences, Plymouth, PA); SB505124 (TOCRIS Bioscience, Ellisville, MO); SIS3 and Akt inhibitor IV (Calbiochem, La Jolla, CA); SB203580 (Selleck Chemicals, Houston, TX); and TGF-β1, TGF-β2, and TGF-β3 (R&D, Minneapolis, MN). The micromass cul- ture was performed as described previously (Ahrens et al. 1977). Briefly, the concentration of a mesenchymal cell sus- pension was adjusted to 2×107 cells/ml, and a 10-μl drop of this cell suspension was placed in a culture dish. After incu- bating for 1 h at 37°C and 5% CO2, F12 medium containing 10% FBS was added to the culture.
Alcian blue staining and quantitation of chondrogenesis. To obtain the photomicrographs, micromass cultures were fixed with Kahle’s fixative for 20 min and then stained with 0.5% Alcian blue 8-GX (Sigma, St. Louis, MO) in 0.1 N HCl over- night. For quantitative analysis, cultures were fixed with 2% glacial acetic acid solution in ethanol for 30 min and rehydrated by sequential incubation with 95 and 70% ethanol for 10 min each. Cells were then stained with 0.5% Alcian blue (MP Biomedicals, Illkirch, France) overnight. After washing with 0.1 N HCl three times, the bound dye was ex- tracted with 4 M guanidine HCl overnight at 4°C. The absorp- tion of the extracted dye was measured at 595 nm using a microplate reader.
Immunofluorescence. Wing bud mesenchymal cultures were washed twice with phosphate-buffered saline (PBS) and fixed for 10 min in 4% paraformaldehyde, followed by incubation with 0.1% Triton X-100 in PBS for 4 min to render the cell membranes permeable. After rinsing and blocking with 1% BSA for 1 h, cultures were incubated with anti-type II colla- gen antibody (Santa Cruz Biotechnology, Santa Cruz, CA) for 1 h. Cells were washed three times in PBS and then incubated with Alexa Fluor 555-conjugated donkey anti-goat IgG sec- ondary antibody (Invitrogen, Grand Island, NY) for 1 h. To visualize the polymerized actin, cells were incubated with Alexa Fluor 488 phalloidin (Invitrogen) along with the sec- ondary antibody. The cells were then washed and counter- stained with 4′,6′-diamidino-2-phenyindole (DAPI; Vector Laboratories, Burlingame, CA) to identify the nuclei. Images were obtained using a fluorescent microscope (Axiovert 2, Carl Zeiss, Oberkochen, Germany). All incuba- tions were carried out at room temperature in a dark, humid chamber.
Immunoblotting. Cells were washed with ice-cold PBS and lysed with lysis buffer [50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM NaF, 1 mM sodium orthovanadate, 0.25% sodium deoxycholate, 1% NP-40, and protease inhibitor cocktail (Sigma)]. After intermittent agita- tion for 30 min at 4°C, the lysates were centrifuged at 15, 000×g for 10 min at 4°C. The protein concentration of the supernatant was measured using a BCA protein assay (Pierce, Rockford, IL). Samples containing 30 μg of total protein were separated by 10% sodium dodecyl sulfate poly- acrylamide gel electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane. After blocking with 4% nonfat milk in 0.1% Tween 20 in Tris-buffered saline (TBS-T) for 1 h at room temperature, the membranes were probed overnight at 4°C with the indicated primary antibodies diluted in blocking buffer. The primary antibodies were obtained as follows: anti- type II collagen, TGF-β1, p38, pp38, (Santa Cruz Biotechnology), TGF-β2, TGF-β3, TβbRI, TβRII, TβRIII, pSmad2, pSmad3, Akt, pAkt, ERK, pERK, GAPDH (Cell Signaling, Denver, MA), Smad2 (Abcam, Eugene, OR), Smad3 (Pierce), and pJNK (Millipore, Billerica, MA). Membranes were washed with TBS-T three times and incu- bated with the respective horseradish peroxidase (HRP)-con- jugated secondary antibodies (Cell Signaling) for 1 h at room temperature. The blots were developed with the Super Signal West Femto kit (Pierce) and exposed to X-ray film. Some bands were quantified by densitometry using ImageJ software.
Immunoprecipitation. For immunoprecipitation, equal amounts of the protein extracts (300 μg) were pre-cleared for 2 h with protein A agarose (Sigma). The pre-cleared sam- ples were immunoprecipitated with 1 μg of anti- phosphoserine antibody (Millipore) at 4°C overnight. The im- mune complexes were recovered by adding 30 μl of protein A agarose bead slurry. The beads were blocked with 1% nonfat dry milk in lysis buffer, washed in lysis buffer, and then incu- bated with the samples for 2 h at 4°C. Immunocomplexes were collected by centrifugation, separated by SDS-PAGE, and blotted onto a nitrocellulose membrane. Immunoblotting was carried out with the anti-TβRI antibody.
RNA isolation and reverse transcription. Total RNA was ex- tracted from the cultures using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. One microgram of total RNA was reverse-transcribed using SuperScript III (Invitrogen). The cDNAs (1 μL) were then subjected to PCR using PCR Master Mix (Takara, Otsu, Shiga, Japan) and primers according to the manufacturer’s protocol. The PCR conditions were as follows: denaturation at 95°C for 10 min; 29 cycles each at 95°C for 1 min, annealing temper- ature for 1 min, and 72°C for 1 min, followed by 72°C for 10 min. The primer sequences and annealing temperatures for each primer are shown in Table 1. The PCR products were analyzed by electrophoresis on 1% agarose gel. The above experiments were repeated at least three times.
Results
Staurosporine activates transforming growth factor beta re- ceptor I. The administration of staurosporine to the limb bud mesenchymal cells resulted in the complete loss of actin stress fibers and the induction of type II collagen expression, a chon- drocyte marker, as determined by immunostaining and west- ern blot (Fig. 1a, b). This is consistent with a previous report by Kim et al. (2012a).
To determine whether TGF-β signaling is involved in staurosporine-induced chondrogenesis, the effect of SB505124, an inhibitor of TβRI (DaCosta et al. 2004), on the TGF-β signaling was evaluated. SB505124 almost completely blocked chondrogenesis induced by staurosporine (Fig. 1a, c). Although SB505124 did slightly alter cell shape, it did not block the dissolution of actin stress fibers by staurosporine. These results indicate that TGF-β signaling is implicated in the chondrogenic process following dissolution of actin stress fibers by staurosporine.
To further investigate the involvement of TGF-β signaling in staurosporine-induced chondrogenesis, gene and protein expression levels of TGF-β1, TGF-β2, and TGF-β3; TβRI; TβRII; and TβRIII were determined by RT-PCR and Western blot analysis, respectively. RT-PCR showed a decrease in the transcript of TGF-β1, TGF-β3, and TβRIII and an increase in the transcript of TβRII by staurosporine administration, whereas the transcript levels of TGF-β2 and TβRI remained unchanged (Fig. 2a). Western blot analysis showed generally similar patterns of transcript level, except for an increase in TGF-β3 and TβRIII (Fig. 2b). Next, we analyzed the possible involvement of TβRI in staurosporine-induced chondrogene- sis. As shown in Fig. 2c, treatment with staurosporine in- creased phosphorylation of TβRI. Our findings indicate that activation of TβRI is implicated in staurosporine-induced chondrogenesis.
TGF-β alone is not enough to induce chondrogenesis of wing bud mesenchymal cells in monolayer culture. In order to ex- amine whether TGF-β is able to induce chondrogenesis as does staurosporine, TGF-β1, TGF-β2, or TGF-β3 was ad- ministered to the cultures. As shown in Fig. 3a, none of them induced type II collagen production in single mesenchymal cells. Immunofluorescence microscopy using anti-type II col- lagen confirmed these results (data not shown). TGF-β1 has been known to stimulate chondrogenic differentiation in micromass culture conditions, in which cells aggregate and spontaneously differentiate into chondrocytes (Bang et al. 2000; Jin et al. 2006). Therefore, the micromass culture sys- tem was employed to examine whether the TGF-βs used in this study function normally. TGF-β1, TGF-β2, or TGF-β3 was administered to the micromass cultures for 3 days, and cultures were stained with Alcian blue to assess chondrogenic differentiation. Alcian blue staining revealed that all of the TGF-βs significantly enhanced chondrogenesis (Fig. 3b). Western blot analysis using the anti-type II collagen antibody confirmed these results (Fig. 3c). The present results imply that TGF-β promotes chondrogenesis under micromass culture conditions but is unable to induce chondrogenesis in single-cell culture conditions.
Smad canonical Smad signaling pathways are necessary for staurosporine-induced chondrogenesis. In order to understand the signaling pathways by which staurosporine induces chon- drogenesis, we first sought to discover whether there is an association with the Smad signaling pathway. Since the ca- nonical TGF-β signaling pathway involves activation of Smads via phosphorylation of Smad2 and/or Smads3, we sought to determine whether staurosporine affects this phos- phorylation. Cells were cultured in the presence of staurosporine for 2 days, and the phosphorylation of Smads was examined. Staurosporine inhibited the phosphorylation of Smad2 but had little effect on the phosphorylation of Smad3 (Fig. 4a). Co-treatment of SB505124 with staurosporine al- most completely abolished the phosphorylation of Smad2 and Smad3 (Fig. 4b). Administration of SIS3, a Smad3 inhibitor (Jinnin et al. 2006), suppressed the expression of type II col- lagen that was induced by staurosporine. These results indi- cate that the Smad pathway is required for staurosporine- induced chondrogenesis.
Akt and p38 MAPK are downstream targets of TGF-β signal- ing during staurosporine-induced chondrogenesis. TGF-β has been described to utilize a multitude of intracellular signaling pathways in addition to the Smads in order to regu- late a wide array of cellular functions (Zhang 2009). These non-canonical, non-Smad pathways include various branches of the mitogen-activated protein (MAP) kinase and phos- phatidylinositol-3-kinase/Akt pathways. In order to determine which downstream kinase in the TGF-β pathway was affected during staurosporine-induced chondrogenesis, staurosporine was administered alone or together with SB505124 to mesen- chymal cells in a monolayer culture, and the phosphorylation of MAP kinases and Akt was examined. Administration of staurosporine increased the phosphorylation level of Akt, while SB505124 reduced phosphorylation (Fig. 5a, b). Inhibition of Akt activity with Akt Inhibitor IV blocked staurosporine-induced chondrogenesis (Fig. 5b). In addition, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was increased by staurosporine and decreased by SB505124 (Fig. 5c, d). Inhibition of p38 activity by SB203580 suppressed staurosporine-induced chondrogenesis (Fig. 5d). These findings suggest that Akt and p38 MAPK act downstream of the TGF-β receptor, which is activated by staurosporine.
Phosphorylation of extracellular signaling-regulated kinase (ERK) was slightly increased by staurosporine and SB505124 (Fig. 6a, b). PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, blocked the phosphorylation of ERK but did not induce chondrogenesis (Fig. 6b). These results suggest that ERK is not implicated in staurosporine- induced chondrogenesis. Phosphorylation of c-Jun NH(2)-ter- minal kinase (JNK) was increased by staurosporine but was not affected by SB505124 (Fig. 6c, d). SP600125, a JNK inhibitor, decreased the phosphorylation of JNK and sup- pressed staurosporine-induced chondrogenesis, indicating that JNK is involved in chondrogenesis induced by staurosporine but is not downstream of the TGF-β signaling pathway acti- vated by staurosporine.
Discussion
Because cells in a micromass culture progress through chon- drogenesis in multiple steps and the steps are not clearly sep- arated from one another, it is difficult to investigate the role of each step separately (e.g., reorganization of the cytoskeleton). However, using the monolayer culture system, the role that the cytoskeleton plays during chondrogenesis induced by cyto- skeletal alteration can be investigated. Early studies focused on staurosporine’s ability to induce chondrogenesis (Borge et al. 1997; Lee et al. 2003; Hoben and Athanasiou 2008).
More recently, the possible regulatory mechanisms of actin filament disruption during staurosporine-induced chondro- genesis have been of interest (Kim et al. 2012a). The report by Rottmar et al. (2014) that PI3K, PKC, and MAPKs are implicated in staurosporine-induced re-differentiation was the first study investigating the signaling pathways associated with staurosporine-induced chondrogenesis in a low-density culture. To further elucidate the mechanisms of action in staurosporine-induced chondrogenesis, the present study in- vestigated the possible role of TGF-β and its downstream pathways.
We observed that staurosporine disrupted actin stress fibers and induced chondrogenic differentiation of mesenchymal cells. SB505124 almost completely blocked this chondrogen- esis without affecting cell morphology or the F-actin staining pattern. These results imply that staurosporine uses the TGF-β pathway not for disrupting actin filaments, but rather for in- ducing chondrogenesis after filament disruption. Interestingly, staurosporine did not significantly affect the expression of either the mRNA or protein of TGF-βs and TβRs (Fig. 2). However, the phosphorylation of TβRI was increased by staurosporine treatment. These results indicate that staurosporine induces chondrogenesis by activating TβRI. Just how staurosporine activates TβRI remains to be determined.
TGF-β has been shown to promote chondrogenesis by in- creasing the aggregation of mesenchymal cells under micromass culture conditions (Iwasaki et al. 1993; Chimal- Monroy and Diaz de Leon 1997; Johnstone et al. 1998). Consistent with these studies, TGF-β1, TGF-β2, and TGF-β3 were observed to promote cell aggregation and chon- drogenesis of mesenchymal cells under micromass culture conditions (Fig. 3). However, none of the TGF-βs used in this study was able to induce chondrogenesis of mesenchymal cells in monolayer culture. The cells treated with TGF-β ex- hibited a fibroblastic morphology and contained stress fibers similar to the control cells (data not shown). Given that the reorganization of actin filaments is critical for chondrogenesis, failure of chondrogenesis induction by TGF-β attributes to the absence of cytoskeletal change. Our findings suggest that ac- tivation of the TGF-β pathway alone is not sufficient to induce chondrogenesis in a monolayer culture, although it is required for staurosporine-induced chondrogenesis.
The Smad pathway has been known to be crucial for chon- drogenesis. Smad2 is activated by TGF-β1, leading to the chondrogenic differentiation of mesenchymal cells (Re’em et al. 2012). Overexpression of Smad3 strongly induces the chondrogenesis of mesenchymal cells (Furumatsu et al. 2005). Activity of Smad2/3 is also important for the continu- ation of collagen II deposition (Hellingman et al. 2011). Consistent with previous observations, we found that Smad signaling is required for chondrogenesis induced by staurosporine. SB505124 almost completely blocked the phosphorylation of Smad2 and Smad3 and resulted in inhibi- tion of chondrogenesis induced by staurosporine. Inhibition of Smad3 by SIS3 also blocked staurosporine-induced chondro- genesis. However, phosphorylation of Smad2 or Smad3 was not upregulated by staurosporine. At this point, it is not clear why phosphorylation of Smad2 and Smad3 was not increased by staurosporine which activated TβRI. After phosphorylated Smad2 and Smad3 mediate their transcription activity, they are dephosphorylated by phosphatase including protein phos- phatase, Mg2+/Mn2+ dependent, 1A (PPM1A) which is acti- vated by PKCδ (Lin et al. 2007; Lee et al. 2013). Because staurosporine inhibits PKC isoforms including PKCδ (Seynaeve et al. 1994), we speculate that staurosporine has the opposite effect on the phosphorylation of Smad2 or Smad3. In other words, staurosporine stimulates phosphory- lation of Smad2 and Smad3 by activating TβRI and dephos- phorylates them by inhibiting PKCδ. Consequently, there is no increase in the phosphorylation of Smad2 and Smad3 by staurosporine. However, the exact mechanisms regulating phosphorylation of Smad2 and 3 by staurosporine remain to be elucidated.
Mesenchymal cells were cultured
in the presence or absence of staurosporine (ST) for 1 or 2 d. The phosphorylated forms of Smad2 and Smad3 were analyzed by Western blot (upper panel). The expressions of pSmad2 and pSmad3 were quantified and normalized to Smad2 and Smad3, respectively (lower panel). The data are presented as the mean± SD (n=3). (b) Cells were treated with ST, ST + SB505124, or ST + 10 μM SIS3 for 2 d, and the phosphorylated forms of Smad2 and Smad3 were analyzed by Western blot. GAPDH was used as a loading control. The immunoblots are representatives from three or more independent experiments.
Besides the canonical Smad-mediated TGF-β signaling pathway, TGF-β regulates cellular or physiological processes through non-canonical pathways by activating other signaling pathways, including PI3K/Akt and MAP kinases, that are in- dependent of the Smad proteins (Zhang 2009). The role of MAP kinases in chondrogenesis has been extensively investi- gated (Bobick and Kulyk 2008). We sought to elucidate the downstream targets of TGF-β signaling in response to the staurosporine alteration of the actin cytoskeleton by investi- gating four kinases, including Akt, p38 MAPK, JNK, and ERK. As mentioned before, PI3K and p38 MAPK pathways positively regulate chondrogenesis in staurosporine-induced re-differentiation (Rottmar et al. 2014). Consistent with these results, the current study showed that inhibition of Akt and p38 MAPK with their respective specific inhibitors blocked staurosporine-induced chondrogenesis (Fig. 5). In addition, we also showed that inhibition of JNK suppressed staurosporine-induced chondrogenesis (Fig. 6), indicating that Akt, p38 MAPK, and JNK are implicated in the process. However, not all the kinases examined in this study are associated with the TGF-β signaling pathway. While SB505124 attenuated the phosphorylation of Akt and p38 MAPK, it did not affect the phosphorylation of JNK. These results suggest that Akt and p38 MAPK are downstream of TGF-β signaling. The current study also suggests that JNK is implicated in chondrogenesis induced by staurosporine but is not downstream of the TGF-β signaling pathway after actin cytoskeletal alteration by staurosporine.
ERK has been known to be a negative regulator of chon- drogenesis. Phosphorylation of ERK decreases as chondro- genesis proceeds (Oh et al. 2000). Inhibition of ERK with PD98059 promotes the chondrogenesis of mesenchymal cells in a micromass culture (Oh et al. 2000) and enhances staurosporine-induced re-differentiation (Rottmar et al. 2014). In the present study, phosphorylation of ERK was not significantly affected by staurosporine and was even slightly increased (Fig. 6a). Furthermore, inhibition of ERK with PD98059 alone failed to induce chondrogenesis, although it did almost completely abolish the phosphorylation of ERK (Fig. 6b). These results suggest that release from ERK inhibition is not enough to induce chondrogenesis in a mono- layer culture and that staurosporine does not employ ERK during its induction of chondrogenesis.
In summary, our study demonstrates that alteration of actin filaments by staurosporine induces chondrogenesis of mesenchymal cells under monolayer culture conditions through TGF-β pathways including canonical Smads and non-canonical Akt and p38 MAPK signaling. The present study also shows that ERK is not involved in staurosporine- induced chondrogenesis and that JNK activity is regulated by presence of staurosporine for 1 or 2 d, and the cell lysates were subjected to Western blot analysis with pERK, ERK, and pJNK antibodies. (b, d) Mesenchymal cells were treated with staurosporine alone or with SB505124 and 10 μM SP600125 for 2 d. Cells were also treated with 10 μM PD98059 for 2 d. Cell lysates were subjected to Western blot analysis with type II collagen (Col II), pERK, ERK, and pJNK antibodies. GAPDH was used asa loading control. The immunoblots are representatives from three or more independent experiments. staurosporine but not the TGF-β pathway, suggesting that staurosporine uses multiple pathways to induce chondrogen- esis. Staurosporine is known to not only inhibit many protein serine-threonine kinases and tyrosine kinases (Nakano and Omura 2009) but also disrupt actin stress fibers. Therefore, it may be inferred that the mechanisms of action of staurosporine on chondrogenesis are complicated. More ex- tensive and thorough studies are needed to elucidate these mechanisms.
References
Ahrens PB, Solursh M, Reiter RS (1977) Stage-related capacity for limb chondrogenesis in cell culture. Dev Biol 60:69–82
Bang OS, Kim EJ, Chung JG, Lee SR, Park TK, Kang SS (2000) Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem Biophys Res Commun 278:522–529
Bobick BE, Kulyk WM (2008) Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling. Birth Defects Res C Embryo Today 84:131–154
Borge L, Lemare F, Demignot S, Adolphe M (1997) Restoration of the differentiated functions of serially passaged chondrocytes using staurosporine. In Vitro Cell Dev Biol Anim 33:703–709
Chen JK, Hoshi H, McKeehan WL (1991) Stimulation of human arterial smooth muscle cell chondroitin sulfate proteoglycan synthesis by transforming growth factor-beta. In Vitro Cell Dev Biol 27:6–12
Chimal-Monroy J, Diaz de Leon L (1997) Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells. Int J Dev Biol 41:91–102
DaCosta BS, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-beta type I recep- tors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752
DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signal- ing in cartilage development. Osteoarthr Cartil 8:309–334
Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signal- ing through Smads. Annu Rev Cell Dev Biol 21:659–693
Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB- binding protein/p300 recruitment. J Biol Chem 280:8343–8350
Hellingman CA, Davidson EN, Koevoet W, Vitters EL, van den Berg WB, van Osch GJ, van der Kraan PM (2011) Smad signaling deter- mines chondrogenic differentiation of bone-marrow-derived mesen- chymal stem cells: inhibition of Smad1/5/8P prevents terminal dif- ferentiation and calcification. Tissue Eng Part A 17:1157–1167
Hoben GM, Athanasiou KA (2008) Use of staurosporine, an actin- modifying agent, to enhance fibrochondrocyte matrix gene expres- sion and synthesis. Cell Tissue Res 334:469–476
Iwasaki M, Nakata K, Nakahara H, Nakase T, Kimura T, Kimata K, Caplan AI, Ono K (1993) Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology 132:1603–1608
Jin EJ, Lee SY, Jung JC, Bang OS, Kang SS (2008) TGF-beta3 inhibits chondrogenesis of cultured chick leg bud mesenchymal cells via downregulation of connexin 43 and integrin beta4. J Cell Physiol 214:345–353
Jin EJ, Park JH, Lee SY, Chun JS, Bang OS, Kang SS (2006) Wnt-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int J Biochem Cell Biol 38: 183–195
Jinnin M, Ihn H, Tamaki K (2006) Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharmacol 69:597–607
Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal pro- genitor cells. Exp Cell Res 238:265–272
Kim M, Song K, Jin EJ, Sonn JK (2012a) Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in differ- ent way. Exp Mol Med 44:521–528
Kim MJ, Kim S, Kim Y, Jin EJ, Sonn JK (2012b) Inhibition of RhoA but not ROCK induces chondrogenesis of chick limb mesenchymal cells. Biochem Biophys Res Commun 418:500–505
Kulyk WM, Rodgers BJ, Greer K, Kosher RA (1989) Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta. Dev Biol 135:424–430
Langelier E, Suetterlin R, Hoemann CD, Aebi U, Buschmann MD (2000) The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem 48:1307–1320
Lee CR, Grodzinsky AJ, Spector M (2003) Modulation of the contractile and biosynthetic activity of chondrocytes seeded in collagen- glycosaminoglycan matrices. Tissue Eng 9:27–36
Lee SJ, Kang JH, Choi SY, Kwon OS (2013) PKCδ as a regulator for TGF-β-stimulated connective tissue growth factor production in human hepatocarcinoma (HepG2) cells. Biochem J 456:109–118
Leonard CM, Fuld HM, Frenz DA, Downie SA, Massague J, Newman SA (1991) Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchy- mal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol 145:99–109
Lin X, Chen Y, Meng A, Feng X (2007) Termination of TGF-beta super- family signaling through SMAD dephosphorylation—a functional genomic view. J Genet Genomics 34:1–9
Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810
Nakano H, Omura S (2009) Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot (Tokyo) 62:17–26
Oh CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, Chun JS (2000) Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem 275:5613–5619
Park EH, Kang SS, Lee YS, Kim SJ, Jin EJ, Tak EN, Sonn JK (2008) Integrity of the cortical actin ring is required for activation of the PI3K/Akt and p38 MAPK signaling pathways in redifferentiation of chondrocytes on chitosan. Cell Biol Int 32:1272–1278
Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S (2012) Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials 33: 751–761
Rottmar M, Mhanna R, Guimond-Lischer S, Vogel V, Zenobi-Wong M, Maniura-Weber K (2014) Interference with the contractile machin- ery of the fibroblastic chondrocyte cytoskeleton induces re- expression of the cartilage phenotype through involvement of PI3K, PKC and MAPKs. Exp Cell Res 320:175–187
Schofield JN, Wolpert L (1990) Effect of TGF-beta 1, TGF-beta 2, and bFGF on chick cartilage and muscle cell differentiation. Exp Cell Res 191:144–148
Seo HS, Serra R (2007) Deletion of Tgfbr2 in Prx1-cre expressing mes- enchyme results in defects in development of the long bones and joints. Dev Biol 310:304–316
Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ (1994) Differential inhibition of protein kinase C isozymes by UCN- 01, a staurosporine analogue. Mol Pharmacol 45:1207–1214
Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700
Tsuiki H, Fukiishi Y, Kishi K (1996) Relation of TGF-beta 2 to inhibition of limb bud chondrogenesis by retinoid in rats. Teratology 54:191–197
Wezeman FH (1998) Morphological foundations of precartilage develop- ment in mesenchyme. Microsc Res Tech 43:91–101
Zanetti NC, Solursh M (1984) Induction of chondrogenesis in limb mes- enchymal cultures by disruption of the actin cytoskeleton. J Cell Biol 99:115–123
Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139
Zhang X, Ziran N, Goater JJ, Schwarz EM, Puzas JE, Rosier RN, Zuscik M, Drissi H, O’Keefe RJ (2004) Primary mu- rine limb bud mesenchymal cells in long-term culture com- plete chondrocyte differentiation: TGF-beta delays hypertro- phy and PGE2 inhibits terminal differentiation. Bone 34: 809–817